If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+71x+288=0
a = 4; b = 71; c = +288;
Δ = b2-4ac
Δ = 712-4·4·288
Δ = 433
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(71)-\sqrt{433}}{2*4}=\frac{-71-\sqrt{433}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(71)+\sqrt{433}}{2*4}=\frac{-71+\sqrt{433}}{8} $
| 96=5-7x | | -3(1-6n)=75 | | -2y+2=3y+2= | | 4(3x-1)=2(6x-3) | | 4x^2-5x=114 | | 2x+2-2=10 | | 10x+75-5=110 | | 0.5(3x+7=13(2x−2) | | 10x-1-9x=12 | | y+7=9(y+1) | | 2/3x=-1/7 | | 5n-1+5n-1=8 | | -17w+W+13w+16W20=19 | | 3s+s+4=44 | | 23=b-4 | | 2d+8+2d=16 | | (s)2+s=48 | | ∣−9+x∣+10=17 | | 6x-3x=9;x= | | 4m-2m+3=5 | | 50=0.2^x | | s2+s=48 | | 8(x-1)^2x=11* | | 8x2−10x+15=08x2−10x+15=0 | | -20z+9z+5z+9z-20=4 | | 5/m=0.2 | | 7n2-49n=0 | | 21x+70=-140;x= | | 0=19x-38;x= | | -17r+20r-11r+5+17=-10 | | 6w-10=44 | | p+8-3=14 |